KNOPP-TYPE IDENTITIES FOR GENERALIZED MULTIPLE DEDEKIND-TYPE SUMS
نویسندگان
چکیده
منابع مشابه
Note on Dedekind Type Dc Sums
In this paper we study the Euler polynomials and functions and derive some interesting formulae related to the Euler polynomials and functions. From those formulae we consider Dedekind type DC(Daehee-Changhee)sums and prove reciprocity laws related to DC sums.
متن کاملTwisted Dedekind Type Sums Associated with Barnes’ Type Multiple Frobenius-Euler l-Functions
The aim of this paper is to construct new Dedekind type sums. We construct generating functions of Barnes’ type multiple FrobeniusEuler numbers and polynomials. By applying Mellin transformation to these functions, we define Barnes’ type multiple l-functions, which interpolate Frobenius-Euler numbers at negative integers. By using generalizations of the Frobenius-Euler functions, we define gene...
متن کاملGenerating functions and generalized Dedekind sums
We study sums of the form ∑ ζ R(ζ), where R is a rational function and the sum is over all nth roots of unity ζ (often with ζ = 1 excluded). We call these generalized Dedekind sums, since the most well-known sums of this form are Dedekind sums. We discuss three methods for evaluating such sums: The method of factorization applies if we have an explicit formula for ∏ ζ(1− xR(ζ)). Multisection ca...
متن کاملIdentities for the Classical Polynomials Through Sums of Liouville Type
Polynomials defined recursively over the integers such as Dickson polynomials, Chebychev polynomials, Fibonacci polynomials, Lucas polynomials, Bernoulli polynomials, Euler polynomials, and many others have been extensively studied in the past. Most of these polynomials have some type of relationship between them and share a large number of interesting properties. They have been also found to b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kyushu Journal of Mathematics
سال: 2014
ISSN: 1340-6116,1883-2032
DOI: 10.2206/kyushujm.68.405